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OSCILLATION THEOREMS FOR CANONICAL SYSTEMS

OF DIFFERENTIAL EQUATIONS

V. B. Lidskiy

1. The well-known Sturm-Louiville theory of a single /87?*
equation makes the following assumption: If y1(t) and y2 (t) are

two linearly independent solutions of the equation y" + p(t)y = 0,

which are normed in a certain way atj zero, the vector z(t) =

Yi(t) + iy2(t) increases monotonically counterclockwise with

respect to the complex plane with an increase in the parameter.

This fact plays an important role in the theory of a single

equation. In particular, the theorem of Sturm about zero solu-

tions, etc., follow-sfrom this. This article presents similar

facts for the case of a canonical system of an arbitrary number

of equations.

2. A linear canonical system 2k of differential equations

in matrix form may be described as follows [1:|

d - -

' dt YIH(t) y (1)

In this formula H(t) is the real symmetric matrix with order ofl,

2k, whose elements we shall assume are piecewise-continuous func-

tions of the parameter t; Y(t) is the solution matrix; I - con-

stant matrix of the form

*Numbers in the margin indicate pagination in the original
foreign text.
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O-'hO ) (2)

(Ek is the unitary matrix of order k). '

We can sometimes write the matrices H(t) and Y(t) in the form

H(t). = i (t) hz (t)) Y(t) (Yi (t) Y2 (t)
( )h3(t) h4 (t) y3 (t) Y4 (t)] : ( 3 )

where h (t) and Ys(t) are square matrices of order|

k(s = 1, 2, 3, 4). We should note that the system of equations

of second order

dt2 + P(t) 0 (4)
1l"5, p~ny-s\ (4)

with a symmetric matrix of the coefficients P(t) is a particular

case of a canonical system [1].

3. Let us study the solution matrix of the canonical system

Y(t) normed at/ zero by the condition

Y(0) EM.

The matrix Y(t) is symplectic for all t, in other words, the

equation Y*(t)IY(t) = I ([2], §4) holds.* Relation Y(t)IY*(t) = I

may be readily obtained from Y*(t)IY(t) = I. Multiplying in the

left side of this formula and equating the matrices of orderI,

of k, which are identically distributed, we arrive at the

following:

*Y* is the matrix conjugate to the matrix Y.
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/878
Y(t) y(t) - ya (ty (t) = 0; y, (t) y (t) Y(t) y(t) = e; (5)

Y3 (t) 4 (t) - y (t) Y.(t) = O; Y. (t) Y (t) - Ya (t) y; () = E, 

which will be used later on.

4. Let us use z(t) to designate the matrix

z (t) = Y1 (t) + 2 (t), (6)

which is the analog of the vector z(t) (see Section 1). We shall

show that z(t) is a nondegenerate matrix. Actually, zz* =

y1Y* + y 2y* - i(yly* - Y2Y*). Thus, in view of the first equation
1 2 2 1

(5), we have zz* = Y1Y* + y2y*. Since the rows of the square

matrix (Y1, Y2) are linearly independent, the matrix zz* is non-

degenerate. Consequently, the matrix z(t) is nondegenerate. We

should note in passing that we have established that the matrix

z(t)z*(t) is real.

Let us now consider the matrix

with respect to which the following theoremsjlhold:

Theorem 1. The matrix u(t) is unitary and symmetrical for

all values of the parameter t.

Proof. (a) It is apparent that u = z-lz [see (6) and (7)].

Since the matrix zz* is real, we have zz* = zz*. Utilizing this

fact, we obtain uu* = z-lzz*(z-l)* = zzz*(z*))-= Ek. We have

thus proven that the matrix u(t) is unitary.
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(b) To prove the matrix is symmetrical, we should note that

uu = zlzz-lz = Ek. Multiplying this relation on the right by

u* and utilizing the fact that u is unitary, we obtain u(t) = u*(t),

with which we have proven the fact that the matrix u(t) is

symmetrical.

Theorem 2. Let us assume that the matrix of the coefficients

of the canonical system is such that

I/' (t) 0 *. (8)

Then all eigenvalues of the matrix u(t): pl(t), p2 (t), ...,

Pk(t) increase monotonically over a unit circle** in a counter-

clockwise direction. More precisely,

Argps(t)o (s=1,21.. , k). l (9)

To prove the theorem, we first derive the differential equa-

tion which the matrix u(t) satisfies

d
dt = ir(t), (10)

where r(t) = 2z-l(t)h4 (t)(z-l[t]).*

When Condition (8) is satisfied, the matrix of the coeffici-

ents of Equation (10) 1ist also positive definite. This makes it

*The quantity h4 (t) is a positive-definite matrix for all
t. We should note that in the case of a second order system of
the form (4) h4 (t) - Ek [1], and condition (8) is always satisfied.

**The eigenvalues of a matrix with unit modulus equal unity.
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possible to establish the validity of inequalities (9) in a

simple way.

Let us derive Equation (10). Let us differentiate u(t) =

z-l(t)z(t) (the dot designates differentiation):

=--z zz z+z z=[-Z-Z +i z.u u (11)

Let us designate the expression in the brackets by ir(t) and /879

let us transform it as follows:

ir (t)= z-' -d'z(z-) = (z- )- '+ Zz*) (z-i)) (12)

In addition, we have

-_ : - zot = 2i hlt (Y, i1)(y -syt)C 2t ( mI -- jJy) (13)

We should note that, if we substitute the matrices I, H(t)

and Y(t) written in the form (2), (3) in Equation (1), then we

obtain the following expression for the derivatives yl and Y2

-1 h3 (t)y, + h (t)y3; y2=h 3 (t)y 2 + (t)yd,

Introducing these expressions in the right side of Formula

(13), we obtain

j'2Y -7 Y1Y'2 = 3 (t)(Y2,-y Y2;)+ a, (t-)(Yy; -Y))').l

*During the proof, we shall establish that not only :the
dimensions but also the subspaces coincide.
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Turning now to Formulas (5), we find that Y2Y* - YY* = h 4 (t).

Thus, Formula (12) acquires the form ir(t) = 2iz-h4 (t)(z-)*, and

on the basis of (11) we have established the validity of Formula

(10).

Let us now prove the theorem which connects the zero of the

determinants of the matrices yi(t) and y2(t) with the eigenvalues

of the matrix u(t).

Theorem 3. The determinant of the matrix y2 (t) (and yl(t))

vanishes for one and the same values of the parameter t, for which

the matrix u(t) assumes an eigenvalue equal to +1 (and -1). Thus,

the size of the zero eigen subspace of the matrix y2(t) (and,. yj(t))

equals the dimension of the eigen subspace of the matrix u(t),

which agrees with the eigenvalue +1 (u - 1).*

Proof. (a) For a certain value of the parameter t, let us

assume that the matrix u(t) has an eigenvalue of +1, and let us

also assume that the vector f has the corresponding eigen subspace.

Then u(t)f = f or (yl(t) - iy2(t))-1 (yi(t) + iy 2 (t))f = f. Apply-

ing the matrix yl(t) - iy2(t) to both sides of this equation, we

obtain y 2 (t)f = 0.

(b) On the other hand, let us now assume that for a certain

value of t the determinant of the matrix y2(t) vanishes, and the

vector f belongs to the zero eigen subspace of the matrix. The

vector f may be assumed to be real. Since y2(t)f = 0, we have

l (t) f = (y(t) - ia (t))-l y (t) f ( 14)
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Changing in this relationship to complex-conjugate values, we

obtain u(t)f = (yl(t) + iy2 (t))-lyl(t)f. Let us now apply the

matrix u(t) to both sides of this equation. Utilizing the fact

that u(t)u(t) = u(t)u*(t) = Ek, we shall have

f= L(t) (y (t) + iy2 (t))- y, (t)= (y (t) - iy2(t))-y,(t) f. (15)

Comparing (14) and (15), we find that u(t)f = f.

The proof with respect to the matrix yl(t) is carried out in

a similar way. We have thus proven the Theorem 3.

In conclusion, let us formulate a theorem of comparison for /880

the eigenvalues of two unitary matrices of the form (7), pertain-

ing to two canonical systems.

Theorem 4. Let us set (d/dt)Yl = IHl(t)Yl and (d/dt)Y2 =

IH2 (t)Y2 - two canonical systems, the matrices of whose coeffici-

ents satisfy the inequality

H, lt)>H2 M(t). 
(16)

Then the eigenvalues p5 )up 2)(t)(s = 1, 2, ..., k) of the

unitary matrices u(i)(t) and u(2)(t), which correspond to the

systems being considered according to Formula (7), continuously

depend on the parameter t and may be numbered so that for all t > 0

the following inequality is satisfied

Arg p) (t)> Argp(2) (t)*. 1 (17)

*It is assumed that for t = 0 the equation holds in (17).



In other words, the eigenvalues of the matrix u(l)(t) .

"lead" the eigenvalues of the matrix i (li

5. Theorems 2 and 4, together with Theorem 3, make it

possible to formulate a theorem regarding the intermittence of

the zeros in the determinants of the matrices yi(t) and y2(t), as

well as theorems of comparison for the zeros of the determinants

of these matrices. These theorems are similar to the Sturm

theorems for a single equation y" = p(t)y = 0.**

We should note that the theorems given above are valid for

a wide range of assumptions: the matrix Y(t) may be normed to :

zero by the condition Y(O) = C2k, where C2k is an arbitrary real

symplectic matrix, and the matrix u(t) may be compiled not only

from the upper k rows of the matrix Y(t) (as was done above) but

also from the arbitrary k rows, whose number il, i2, ... , i
k

obeys the unique condition li' - i"l ) k. In Theorem 2 condition

(a) is replaced by the requirement that a matrix on the order of

k, which is obtained when the coefficients H(t) of the k rows

and the k columns with the numbers il, i 2, ... , ik are deleted

from the matrix, is positive definite.

The theorems given above have a direct relationship to the

problems of the distribution of eigenvalues of boundary value

*For a second order system of the form (4) the theorem
regarding the intermittnhce of the zeros and the theory of com-
parison of zeros are not a new result. They were first obtained
in the study [3]. We should point out that in all the works we
are familiar with on these problems the authors have used the
methods of variational calculus.|
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problems for canonical systems. We should also note that they

closely coincide with the theory of the stability of canonical

systems, which the author of this article studied along with

M. G. Neygauz under the leadership of associate member of the

Academy of Sciences of USSR, I. M. Gel'fand. They were established

in connection with stability problems.
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